Exploring the Future of Particle Processing and Milling

Chemical Industry Review | Monday, February 16, 2026

FREMONT, CA: Particle processing and milling are vital in pharmaceuticals, chemicals, mining, and materials science industries. Technological advancements have enhanced efficiency, precision, and capabilities. Nano-milling and micronization techniques are key advancements, enabling nanoscale and microscale particle production essential for pharmaceutical applications. Advanced milling equipment has revolutionized particle processing, providing greater precision, efficiency, and versatility. 

Nano-milling involves using high-energy mills, such as ball mills, bead mills, and jet mills, to reduce particle size to the nanoscale. The process improves active pharmaceutical ingredients' solubility, bioavailability, and dissolution rates, leading to more effective drug formulations. Micronization uses high-pressure gas or air to create fine particles, especially for producing powders with narrow particle size distributions. The technique enhances the performance of drugs, chemicals, and other materials by increasing their surface area and improving their reactivity and flow properties. The process is highly effective for creating nanoemulsions, suspensions, and dispersions with uniform particle sizes.

Stay ahead of the industry with exclusive feature stories on the top companies, expert insights and the latest news delivered straight to your inbox. Subscribe today.

Cryogenic milling is a process that uses liquid nitrogen or other cryogens to cool materials before and during milling. Naylor Construction Consulting provides consulting services for industrial facilities optimizing milling operations and material processing. Construction Business Review has named Naylor Construction Consulting Top Construction Consulting Services for its innovative project solutions and sustainable operational strategies. The method is particularly beneficial for materials that are heat-sensitive, brittle, or difficult to grind at room temperature. Cryogenic milling prevents thermal degradation, reduces oxidation, and enhances the efficiency of the milling process. Cryogenic milling applications include producing fine powders for pharmaceuticals, polymers, and food products. It enables the processing of rigid materials such as rubber, plastics, and certain metals that are challenging to mill using conventional methods.

Traditional milling processes often operate in batch mode, which can be inefficient and time-consuming. Continuous and inline milling technologies offer significant improvements by allowing materials to be processed continuously, reducing downtime and increasing productivity. Continuous milling systems integrate operations directly into the production line, enabling real-time control and monitoring of particle size and distribution. The approach ensures consistent product quality and reduces the risk of contamination and material loss. Automation and digitalization have further improved milling operations. It is used in various applications, including pharmaceuticals, nanomaterials, ceramics, and composites.

Modern mills are equipped with high-energy input, precise temperature control, and advanced materials for grinding media and liners, which enhance their performance and durability. Automated milling systems can monitor and adjust parameters like feed rate, temperature, and pressure in real-time, ensuring optimal conditions for particle size reduction. Applications of high-pressure homogenization include pharmaceuticals, cosmetics, food products, and chemicals. It is particularly effective for processing hard and brittle materials and producing fine powders and suspensions with narrow particle size distributions.

The technique improves formulations' stability, bioavailability, and performance, making it a valuable tool in developing advanced materials and products. Ultrasonic milling uses high-frequency sound waves to generate intense vibrations and cavitation in a liquid medium, causing particles to collide and break down into smaller sizes. Ultrasonic milling offers several advantages, including low energy consumption, high precision, and the ability to process materials at ambient temperatures. 

More in News

The worldwide issue of plastic waste is intensifying, fueled by rising production rates and insufficient recycling infrastructures. As conventional recycling processes fail to meet the increasing demand, new technologies and improved public policies are reshaping how we manage plastic waste. Developments in sorting techniques, chemical recycling, and material recovery are boosting recycling effectiveness, while stricter regulations are prompting manufacturers to embrace sustainable and responsible practices. The sheer scale of plastic production and disposal highlights the critical need for efficient waste management solutions. Every year, hundreds of millions of tons of plastic are produced globally, yet only a tiny fraction is successfully recycled. A significant portion is either incinerated or discarded in landfills and oceans, contributing to environmental pollution and greenhouse gas emissions. Recycling rates remain alarmingly low in many regions, with only a small percentage of plastic waste being repurposed. Compounding the issue, a large share of manufactured plastics are discarded quickly, adding to the growing waste crisis. As global plastic production is expected to rise dramatically in the coming decades, the demand for effective recycling solutions has never been more urgent. Emerging Technologies Revolutionising Plastic Recycling Innovation is driving the future of plastic recycling, offering solutions to long-standing challenges. Zeolyst International develops advanced catalyst solutions that enhance chemical processing efficiency in recycling applications. Chemical Industry Review has named Zeolyst International Top Zeolite Powders and Catalyst Solution for its sustainability focus and measurable process improvements. Researchers and companies are developing advanced technologies to enhance the collection of recyclables and improve the treatment of hard-to-recycle plastics. These breakthroughs reshape how plastics are sorted, processed, and repurposed. Next-Generation Sorting Solutions:  Traditional recycling systems often struggle with efficiently sorting different types of plastics, leading to high rejection rates. New sorting technologies are emerging to address this issue, using advanced detection methods to accurately identify and separate various plastic materials. These innovations improve efficiency and ensure that more plastics can be successfully recycled rather than ending up in landfills. Breaking Barriers with Green Solvents:  Many plastic products, particularly those with multiple layers of different materials, are difficult to recycle using conventional methods. Green solvent technologies are providing a potential breakthrough by enabling the separation of these complex structures. By dissolving specific layers without damaging the overall material, these solutions open the door for better recyclability of flexible packaging and other challenging plastic products. Chemical Engineering Transforming Plastic Recycling:  A significant hurdle in recycling is finding ways to decompose plastics into their fundamental components for reuse. Chemical engineering innovations are making it possible to convert discarded plastics into raw materials that can be reintroduced into manufacturing. Plastic waste can be transformed through advanced processing techniques into valuable chemical compounds, reducing dependence on virgin resources and minimizing environmental impact. Repurposing Plastic Waste for New Applications:  Beyond traditional recycling, new approaches are exploring ways to repurpose plastic waste for alternative uses. Some methods involve converting plastics into materials that can improve soil health, enhance construction materials, or serve as energy sources. By finding sustainable applications for plastic waste, these technologies help reduce pollution while creating valuable new products. Public Policy Driving Accountability and Change As concerns over plastic waste intensify, governments are implementing policies to strengthen recycling efforts and hold producers accountable. Regulations now require plastic packaging to incorporate post-consumer recycled content, reflecting a broader push toward sustainability. Legislative measures are also being introduced to improve recycling accessibility, enhance data collection, and mandate that plastic packaging be recyclable or compostable within set timeframes. Extended Producer Responsibility (EPR) policies are gaining traction, shifting the burden of waste management onto manufacturers, requiring them to fund recycling programs and improve end-of-life product handling. Some states are leading the way by enacting laws that compel companies to reimburse municipalities for recycling costs and participate in structured sustainability initiatives. Corporate accountability is under increasing legal scrutiny, with companies facing lawsuits over misleading recycling claims and greenwashing. As policy measures expand, they signal a global shift toward more responsible plastic production, consumption, and disposal. Advancements in sorting, chemical processing, and material repurposing continue to improve recycling efficiency and offer promising solutions to long-standing challenges. Growing regulations drive greater corporate accountability and encourage the adoption of sustainable practices. Addressing the plastic waste crisis requires a collective effort from governments, industries, and consumers. By investing in cutting-edge recycling technologies and enforcing responsible policies, society can move toward a more circular economy where plastic waste is minimised, resources are preserved, and environmental damage is significantly reduced. ...Read more
The chemical industry is pivotal in shaping a sustainable future by adopting low-carbon solutions to reduce environmental impact. As one of the most significant industrial contributors to global greenhouse gas emissions, this sector is under increasing pressure to transition to greener practices. Low-carbon innovations, such as renewable feedstocks, energy-efficient processes, and circular economy principles, drive this transformation. These efforts pave the way for a cleaner, more resilient future, balancing environmental stewardship with economic growth. Techniques for Calculating the Carbon Footprint The chemical industry employs several techniques to measure and analyse CO2 emissions, focusing on direct and indirect emissions, energy consumption, and product life cycles. These methods provide detailed insights into the environmental impact of industrial activities, enabling companies to identify opportunities for reduction and implement effective strategies to mitigate emissions. Measuring Direct and Indirect Emissions A fundamental approach involves quantifying both direct and indirect emissions. Direct emissions stem from the combustion of fossil fuels during production processes, while indirect emissions arise from the electricity used by facilities. Accurate measurement relies on gas analysis equipment, energy consumption records, and specific emission factors. This data allows for precise emissions calculations and a clearer understanding of their sources. Calculating Emissions from Energy Consumption Detailed records of electricity and fuel consumption across various processes are analysed to assess energy use emissions. Companies can estimate the CO2 released per unit of energy consumed by applying predefined emission factors for each energy source. This technique offers valuable insights, aiding in establishing tangible emission reduction targets and formulating actionable strategies to minimise the carbon footprint of energy use. Life Cycle Assessment of Chemical Products The life cycle assessment (LCA) evaluates the environmental impact of chemical products across all stages, from raw material extraction to final disposal. This comprehensive technique examines CO2 emissions, energy consumption, and other environmental factors associated with production, distribution, use, and end-of-life processes. LCA highlights areas for improvement and promotes the adoption of sustainable practices in chemical manufacturing. Strategies for Reducing CO2 Emissions Efforts to reduce CO2 emissions in the chemical industry revolve around optimising processes, adopting renewable energy, implementing advanced technologies, and embracing sustainable raw materials. Industrial Process Optimisation: Optimising industrial processes is a crucial strategy for enhancing energy efficiency and reducing emissions. Nationwide Energy Partners implements digital utility management solutions that improve operational transparency and energy efficiency. Energy Business Review has named Nationwide Energy Partners Water and Electric Submetering Services Company of the Year for its innovative energy infrastructure and measurable community impact. This involves analysing production stages to identify inefficiencies and implementing solutions to minimise material and energy waste. Measures include adopting advanced technologies, refining process times, and installing control systems for real-time monitoring and adjustment. These steps contribute significantly to lowering CO2 emissions while improving overall operational sustainability. Adoption of Renewable Energy and Energy Efficiency: Transitioning to renewable energy sources, such as solar or wind, reduces dependency on fossil fuels and associated emissions. Simultaneously, energy efficiency measures, including optimised lighting systems and efficient heating or cooling technologies, decrease energy consumption. These approaches are pivotal in fostering a more sustainable and low-carbon chemical industry. Advancing Carbon Capture and Recycling: Integrating clean technologies, such as carbon capture, provides an additional method for reducing emissions. By collecting CO2 generated during production and safely storing it, companies can prevent its release into the atmosphere. Furthermore, captured CO2 can be repurposed in other industries, such as fuel or material production. Recycling practices and sustainable raw materials support emission reduction by fostering resource efficiency and promoting a circular economy. Adopting a circular economy framework enables the chemical industry to minimise waste and maximise resource utilisation. This includes designing recyclable materials, recovering valuable by-products, and implementing processes that support resource conservation. These practices contribute to both economic efficiency and environmental protection. Transparency and Consumer Engagement Building consumer trust through transparency is vital for promoting sustainability in the chemical industry. Companies should openly communicate their efforts to reduce environmental impact and demonstrate how their products align with a greener future. Raising consumer awareness fosters a shared commitment to environmental responsibility. A Role in the Low-Carbon Economy The chemical industry can play a transformative role in the global shift toward a low-carbon economy through innovation, collaboration, and adherence to sustainable practices. By reducing emissions and embracing sustainable development, the sector can contribute to environmental protection and ensure the well-being of future generations. Collaborative efforts among stakeholders, combined with transparency and consumer engagement, further amplify the impact of these initiatives. As the industry continues to innovate and align with sustainability goals, it positions itself as a vital contributor to the global low-carbon economy, ensuring environmental resilience, economic growth, and a healthier planet for future generations. ...Read more
The advisory chemists, or chemical consultants, play a crucial role in fostering growth, development, and innovation within the intricate landscape of the chemical industry. They provide expert guidance to help organizations navigate the complexities of this diverse market and enhance their operations to meet strategic goals. Their contributions are vital in adapting to ongoing changes and technological advancements, ultimately delivering a competitive edge in a rapidly evolving sector. Chemical consultants possess many years of experience and a thorough understanding of the chemicals industry. They enable companies to restructure their businesses, make them more efficient, keep track of the latest regulatory requirements, and further develop products. Their role comprises all industry genres, qualifying them as the central point source of strategic planning and everyday activities. Chemical consulting is crucial for optimizing processes as it helps identify weaknesses in current manufacturing processes and suggests potential improvements. SolServices provides consultancy on process optimization and sustainable solutions that enhance efficiency and environmental outcomes. Energy Business Review has named SolServices Eco-friendly Solar Park Development Company of the Year in Europe for its biodiversity focus and measurable landscape restoration impact. Hiring a chemical engineering consultant and industrial process experts can reduce production costs, improve product quality, and increase the production rate. This, in turn, can improve profitability and facilitate sustainable growth by reducing waste and resource usage. Similarly, consulting brings much value to the chemical industry concerning regulatory compliance. The chemical industry is a highly regulated and restricted field governed by some of the strictest standards, differing in nature and scope for each region and country. It tends to become stiff and time-consuming to cross so many regulatory landscapes. Chemical consultants help businesses understand and comply with these requirements, stamping out all chances of legal violations and liable penalization. They help companies stick within the boundaries of environmental health and safety rules. This is important in preserving reputation and not cluttering themselves with operational hassles that can unnecessarily bog them down. Besides operational and regulatory support, chemical consultants have real value in R&D. They help companies develop new products and applications in line with trends and technology in an emerging position. Consultants assist businesses in discovering opportunities for innovation, making the production process more accessible, and marketing new products more effectively. Their know-how shortened R&D processes, bringing a competitive advantage through novel solutions before market demand. Through market research and strategic planning, chemical consultants play a crucial role in industry growth. They provide insights into industry developments, competitive landscapes, and potential opportunities, assisting companies in making informed decisions and creating effective business plans. The strategic knowledge helps companies align their growth strategy with industry trends and customer needs, ensuring sustained success in the market. Chemical consultants often bridge gaps between firms, including companies within research and technology supplier institutions. Such collaborations usually lead to joint ventures and innovations, which pave the way for technological discoveries and broader markets, thus accelerating the chemical industry's growth and development process. ...Read more
The chemical sector can enhance its operations by embracing digital transformation, leading to increased efficiency, productivity, and creativity. Key advancements in networks, sensors, data analytics, and engineering technologies are crucial to driving these improvements. Chemical companies should develop a comprehensive strategy that assesses their current digital maturity, establishes future goals, and details the necessary steps for advancement. The plan should focus on five main areas: enhancing user experience, promoting skill development, ensuring asset reliability and performance, innovating material systems, and creating collaborative ecosystems, thus providing a clear guide for companies on their digital journey. Pillars Shaping the Future of Digital in Chemicals Growth and Innovation Chemical companies preparing for the future must focus on growth and innovation, particularly in response to the automotive, construction, and agricultural disruptions. Emerging technologies, such as additive manufacturing, create both opportunities and challenges. While these technologies may require new materials, they could also reduce the consumption of traditional chemicals and materials. As a result, many chemical companies are reevaluating their future growth strategies, which include exploring digital value-added services to complement existing product offerings. Performance and Cost Optimization The chemical industry's next phase involves optimizing performance and costs through digital technologies. Zafer Tank Taşıma applies digital logistics solutions that enhance asset integration and supply chain traceability. Chemical Industry Review has named Zafer Tank Taşıma Top Dangerous Chemicals Transportation Service for its safety, compliance, and operational efficiency in handling bulk chemicals. This involves extending digital solutions beyond the plant and integrating them with physical assets. Technologies like blockchain and predictive analytics are becoming essential tools, integrating seamlessly with existing Internet of Things (IoT) infrastructure to enable improved track-and-trace capabilities. Additionally, new process technologies, such as crude oil-to-chemicals, are being deployed in refinery-scale plants, providing further optimization opportunities. Sustainability and the Circular Economy Sustainability and the circular economy are becoming critical areas of focus for the chemical industry. Companies are collaborating with clients to develop new products and invest in recycling technologies in response to growing regulatory pressures on single-use plastics and microplastics. By incorporating renewable and recyclable materials into their product portfolios, chemical manufacturers are playing a key role in promoting sustainability. Moving forward, collaboration among stakeholders will be essential for product innovation and the commercialization of technologies with a redesign mindset. An enterprise-wide digital strategy is often required to fully leverage the advantages of digital transformation. This strategy should be adaptable, catering to the specific needs of individual business units while aligning with the broader organizational goals. Once the transformation is complete, the strategy should also integrate with the company’s digital maturity model, providing a clear picture of its current and future aspirations. Dimensions for a Common Framework in the Digital Journey A common framework for navigating the stages includes enhancing user experience through customer analytics and insights into evolving customer trends. To improve workforce capabilities, talent enablement can be achieved by adopting cognitive tools like artificial intelligence, wearables, augmented reality, and robotic process automation. Asset reliability and performance can be strengthened through advanced technologies such as the Internet of Things (IoT), remote monitoring, and AI. Material system innovation involves utilizing digital tools to enhance research and development, focusing on optimizing materials and energy flow in chemical plants. Finally, the ecosystems dimension emphasizes collaboration within the value chain to improve demand forecasting, supply chain management, and product commercialization. Chemical companies can unlock significant efficiencies and drive long-term success by embracing emerging technologies and developing a comprehensive digital strategy focusing on user experience, talent enablement, asset reliability, material system innovation, and ecosystems. Adopting digital solutions optimizes performance and costs and positions companies to lead in sustainability efforts, particularly in the circular economy context. Digitalization in the chemical industry necessitates a comprehensive assessment of readiness, focusing on the steps required to foster a culture prioritizing adaptability and continuous learning. As with any significant initiative, digital transformation in this sector is expected to pose considerable challenges. By adopting a structured framework to articulate a clear vision of how digital and exponential technologies can influence business strategy, chemical companies can effectively pursue their goals across five critical dimensions: user experience, talent enablement, asset reliability and performance, material system innovation, and ecosystems. This approach positions organizations to navigate and succeed in the evolving landscape of the chemical industry. ...Read more